非破壊試験によるコンクリート構造物中の
配筋状態及びかぶり測定要領（案）

平成21年3月

国土交通省大臣官房技術調査課
目次

1. 適用範囲.. 1
2. 測定の対象等.. 1
 (1) 測定断面数及び測定箇所 .. 1
 (2) 測定対象 .. 2
3. 使用機材... 5
 (1) 校正.. 5
 (2) 使用機材 .. 5
4. 測定者 .. 6
5. 事前調査 .. 6
6. 測定方法 .. 7
 (1) 測定精度向上のための補正方法 .. 7
 (2) 測定面の処理 ... 7
 (3) 探査試験 .. 7
 (4) 鉄筋の位置とかぶりの測定が困難な場合 ... 11
7. 規格値 .. 12
8. 報告 ... 13
9. 検査の実施 .. 13
1. 適用範囲
この要領は請負者の施工管理（出来形管理）において、コンクリート構造物内部の鉄筋の配筋状態及びかぶりを対象として探査装置を用いた非破壊試験にて測定を行う場合に適用する。なお、対象構造物としては、橋梁上部・下部工及び重要構造物である内空断面25㎡以上のボックスカルバート（工場製作のプレキャスト製品は全ての工種において対象外）とし、施工条件等によりこの要領（案）によりがたい場合は、監督職員と協議の上、適用範囲を変更してもよい。

請負者は、監督職員が立会を行う場合には、足場の存置に努めるものとする。また、完成検査、中間技術検査等において、発注者から足場設置等の検査に必要な指示があった場合は検査できるように準備するものとする。

2. 測定の対象等
(1) 測定断面数及び測定箇所
対象構造物において、原則として表1に示す数の測定断面を設定し、各断面において、測定箇所を設定する。測定箇所は、60cm以上×60cm以上の範囲（P9の図3）とし、図2(P3～4)を参考として、応力が大きく作用する箇所や隅角部等施工に際してかぶり不足が懸念される箇所、コンクリートの剥落の可能性がある箇所などから選定するものとする。ただし、測定断面数や測定箇所等について、対象構造物の構造や配筋状態等により上記により難い場合は、発注者と協議の上変更してもよい。

表1 対象構造物と測定断面数等

<table>
<thead>
<tr>
<th>対象構造物</th>
<th>測定断面数</th>
<th>測定箇所</th>
<th>試験方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>橋梁上部工</td>
<td>一径間あたり2断面</td>
<td>図2参照</td>
<td>電磁誘導法</td>
</tr>
<tr>
<td>橋梁下部工</td>
<td>柱部 3断面（注1） 張出部 2箇所</td>
<td>図2参照</td>
<td>電磁波レーダ法</td>
</tr>
<tr>
<td>重要構造物のボックスカルバート工</td>
<td>1基あたり2断面</td>
<td>図2参照</td>
<td>電磁誘導法、電磁波レーダ法</td>
</tr>
</tbody>
</table>

・構造物の条件、測定装置の性能等を考慮して試験方法を選定することとするが、試験方法の特性及び想定される設計かぶりより、上部工は電磁誘導法、下部工は電磁波レーダ法を使用することを原則とする。

・表2（P5）に示す性能を確保できる試験方法により実施すること。

・電磁波レーダ法については、現場の工程に支障の及ばない範囲においてコンクリートの乾燥期間を可能な限り確保した上で測定を行うこと。

注1）打設目においてコンクリート打設前に主筋のかぶりを段階確認時に実測した場合には、実測付近の中段、上段の測定を省略することができる。
(2) 測定対象

配筋状態の測定は、鉄筋間隔、測定長さあたりの本数（P10 図 4 参照）を対象とする。かぶりの測定は、設計上最外縁の鉄筋（上部工のスターラップ、下部工の帯鉄筋等）を対象に行うこととする。なお、鉄筋の腐食によるコンクリート表面の剥離、崩落を防止する観点から帯鉄筋等がある場合は、同様にそれらのかぶりも測定する。

図 1 測定対象

注 2) 「かぶり」は、各示方書等において以下の様に記述されている。
・共通仕様書：コンクリート表面から鉄筋までの最短距離
・道路橋示方書：鋼材の最外面からコンクリート表面までの距離、すなわちかぶりの最小値
・コンクリート標準示方書：鋼材あるいはシースの表面からコンクリート表面までの最短距離で計測したコンクリートの厚さ
図2 配筋状態及びかぶりの測定箇所（例）（その1）

下部工側面

- 打設目においてコンクリート打設前に主筋のかぶりを段階確認時に実測した場合には、下部工柱部の中段部及び上段部の測定を省略することができる。

下部工断面
（矩形）

- 柱部断面が円形の場合は、1断面の測定箇所は直交する対角線上の4面とする。
- 直径が小さい場合（2m程度以下）、探査装置の形状により測定が困難な場合がある。
- この場合、測定範囲の変更や測定方法の改良等により対応すること。

下部工断面
（円形）

- 半円部の直径が小さい場合（2m程度以下）、探査装置の形状により測定が困難な場合がある。
- この場合、測定範囲の変更や測定方法の改良等により対応すること。

配筋状態及びかぶりを測定するとともに“l”を測定し、“l'”の概略値（鉄筋径を引いた値）を求める。

下部工側面

▲：配筋状態及びかぶりの測定箇所
----- ：測定断面
図 2 配筋状態及びかぶりの測定箇所（例）（その 2）

打継目においてコンクリート打設前に主筋のかぶりを段階確認時に実測した場合には、打継部付近の測定を省略することができる。

※上下面の測定箇所は、中央付近の桁(1箇所のみ)とする

※支承部の形状寸法により、支承部より1.5H では測定が困難な場合は極力支障部から近い箇所とする
3. 使用機材

（1）校正

探査装置は、メーカー等により校正された機材を用い、使用に際して校正記録を確認するものとする。

（2）使用機材

探査装置は、表 2 の性能を満たすものを使用すること。
なお、記録装置は、得られたデジタル又はアナログ出力を記録できるものとする。

表 2 探査装置の性能（電磁誘導、電磁波レーダ法共）

<table>
<thead>
<tr>
<th>種別</th>
<th>項目</th>
<th>要求性能（電磁誘導、レーダ共）</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本性能</td>
<td>対象となる鉄筋の種類</td>
<td>呼び名 D10〜D51（注3）を測定できること</td>
</tr>
<tr>
<td>分解能</td>
<td>距離</td>
<td>5mm以下であること</td>
</tr>
<tr>
<td></td>
<td>かぶり</td>
<td>2〜3mm以下であること</td>
</tr>
<tr>
<td>測定精度</td>
<td>電磁誘導法</td>
<td>設計かぶりが50mm未満の場合</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75mmの鉄筋間隔が測定できること</td>
</tr>
<tr>
<td></td>
<td>設計かぶりが50mm以上の場合</td>
<td>設計かぶり×1.5の距離の鉄筋間隔が測定できること</td>
</tr>
<tr>
<td></td>
<td>電磁波レーダ法</td>
<td>設計かぶりが75mm未満の場合</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75mmの鉄筋間隔が測定できること</td>
</tr>
<tr>
<td></td>
<td>設計かぶりが75mm以上の場合</td>
<td>設計かぶりの距離の鉄筋間隔が測定できること</td>
</tr>
</tbody>
</table>
| 記録機能 | データの記録 | デジタル記録であること。
容量（注5）1日分の結果を有すること |

注3）当該工事で使用する鉄筋径が探査可能であれば可
注4）装置内の記録だけでなく、データをパソコンに転送、メモリーカードに記録できる機能などでも良い。
注5）電磁誘導法及び電磁波レーダ法以外で上記に示す性能を確保できる試験法により適用する場合は、事前に監督職員の承諾を得るものとする。
4. 測定者
本測定の実施に際しては、各試験に固有の検査技術ならびにその評価法について十分な知識を有することが必要である。このため、測定者について、事前に監督職員の承諾を得た者が実施するものとする。

5. 事前調査
探査試験を開始する前に、探査箇所の設計図及び完成図等の既存資料より、測定対象のコンクリート構造物の設計諸元（形状、鉄筋径、かぶり、間隔等）を事前に確認する。
6. 測定方法

（1）測定精度向上のための補正方法

1) 電磁波レーダ法における比誘電率分布及びかぶりの求め方

電磁波レーダ法による測定は、測定対象物のコンクリートの状態（特に含水率の影響が大きい）により比誘電率が異なることにより、測定に先立ち比誘電率分布を求めることとする。

2) 電磁誘導法におけるかぶり測定値の補正方法及びかぶりの求め方

電磁誘導法による測定では、鉄筋の配筋状態が異なると磁場の影響が異なるため、かぶり測定値の補正が必要となる。したがって、実際の配筋状態によって補正値を決定しておく。

| 表 3 補正測定が必要な条件及び頻度 |
|---------------------------------|-----------------|-----------------|
| 補正が必要な条件 | 測定頻度 |
| 配筋条件 | コンクリート条件 |
| 電磁波レーダ法における比誘電率分布及びかぶりの求め方 | 含水状態が異なると考えられる部位ごとに測定 | 現場施工条件を考慮し、測定時のコンクリート含水率が同一となると考えられる箇所毎 |
| | 例えば、 | |
| | ・コンクリート打設日が異なる場合 | 配筋条件が異なる毎に測定 |
| | ・脱型時期が異なる場合 | |
| | ・乾燥状態が異なる場合（例えば、南面は日当たりがいいが、北面はじめじめしている）など | コンクリート含水率が同一となると考えられる箇所毎 |
| 電磁誘導法におけるかぶり測定値の補正方法及びかぶりの求め方 | 鉄筋間隔が設計かぶりの1.5倍以下の場合 | 配筋条件が異なる毎に測定 |
| | |

（2）測定面の処理

コンクリート構造物は測定が良好に実施出来るよう、コンクリート構造物の汚れ等測定を妨げるものが存在する場合には、これらを除去する等、測定面の適切な処理を行う。

（3）探査試験

コンクリート構造物中の配筋状態及びかぶりの探査は、走査線上に探査装置を走査
することによって行う。以下に基準線、走査線の設定から測定までの手順を示す。なお、各段階において参照する図については、下部工柱部を想定して作成している。
1）基準線、走査線の設定及び鉄筋位置のマーキング

探査面（コンクリート表面）の探査範囲（60cm×60cm 以上）内に予想される鉄筋の軸方向に合わせて、直交する 2 本の基準線（X、Y 軸）を定めマーキングする。次に、基準線に平行に X 軸、Y 軸それぞれ測定範囲の両端及び中央に走査線 3 ラインを格子状にマーキングする。マーキングされた走査線上を走査することにより配筋状態の探査を行い、鉄筋位置のマーキングを行う（図3参照）。

![図3 配筋状態の測定（鉄筋位置のマーキング）](image-url)
２）鉄筋位置の作図及びかぶり走査線の設定

鉄筋位置のマーキング、3点を結び、測定面に鉄筋位置を示す。作図された鉄筋位置により配筋状態を確認した後、かぶりの測定に際し、鉄筋間の中間を選定し、測定対象鉄筋に直交する3ラインのかぶり測定走査線を設定する（図4参照）。
3) かぶりの測定

かぶり測定走査線にて測定を行い、全ての測点の測定結果について表4の判定基準により是断の判断を行う（図5参照）。また、帯鉄筋等がある場合は、それらのかぶりを測定、もしくは、既知の鉄筋径より推定し、その値が表4の判定基準を満たすこととする。

図5 かぶりの測定

(4) 鉄筋の位置とかぶりの測定が困難な場合

電磁波レーダ法による測定の場合、以下の条件に該当する構造物は測定が困難となる可能性がある為、それらの対処法について検討しておくものとする。

・ 鉄筋間隔がかぶり厚さに近いか小さい場合。
・ 脱型直後、雨天直後など、コンクリート内に水が多く含まれている場合。
・ 鉄筋径が太い場合。
7. 規格値
配筋状態及びかぶりの規格値は、出来形管理基準において表 4 の様に示されている。本試験においては、これらの規格値と測定による誤差を考慮し、表 5 により適否の判定を行うものとする。なお、判定を行う際の測定値は、単位は mm、有効桁数は小数点第 1 位とし、小数点第 2 位を四捨五入するものとする。
適否の判断において不良となった測点については、当該測点から鉄筋間隔程度離して両側に走査線を設定し、再測定を行い適否の判断を行う。再測定において 1 測点でも不良となった場合は、不合格とする（図 7 参照）。

表 4 出来形管理基準による規格値

<table>
<thead>
<tr>
<th>項 目</th>
<th>規格値（注7）</th>
</tr>
</thead>
<tbody>
<tr>
<td>配筋状態（鉄筋の測定中心間隔の平均値）</td>
<td>設計間隔±φ</td>
</tr>
<tr>
<td>かぶり</td>
<td>設計値±φかつ最小かぶり以上</td>
</tr>
</tbody>
</table>

φ：鉄筋径

表 5 非破壊試験結果の判定基準

<table>
<thead>
<tr>
<th>項 目</th>
<th>判定基準（注8）</th>
</tr>
</thead>
<tbody>
<tr>
<td>配筋状態（鉄筋の測定中心間隔の平均値）</td>
<td>規格値±10mm上記判定基準を満たさなかった場合設計本数と同一本数以上</td>
</tr>
<tr>
<td>かぶり</td>
<td>（設計値＋φ）×1.2以下かつ下記いずれかの大きい値以上（設計値－φ）×0.8 又は最小かぶり×0.8</td>
</tr>
</tbody>
</table>

φ：鉄筋径

注7）出来形管理基準による配筋状態及びかぶりの規格値（以下、規格値という）は、出来形管理基準において表 4 の様に示されている。コンクリート打設後の実際の配筋状態及びかぶりは、この「規格値」を満たしていれば適正であるといえる。
なお、「規格値」において、±φの範囲（ただし、かぶりについては最小かぶり以上）を許容しているが、これは施工誤差を考慮したものである（図 6 A 部分 参照）。

注8）現状の非破壊試験の測定技術においては、実際の鉄筋位置に対して測定誤差が発生する。このため、非破壊試験においては、測定誤差を考慮して判定基準を定めている。「判定基準」では、この測定誤差の精度を、鉄筋の測定中心間隔の平均値については±10 mm、かぶりについては±20%以内であるとして、「規格値」よりも緩和した値としている（図 6 B 部分 参照）。
8. 報告
この非破壊試験は、工事目的物の出来形及び品質規格の確保を図ることを目的として請負者が実施するものであり、測定方法や測定箇所等について施工計画書に記載し提出するとともに、測定結果は、表6に示す内容を求めた上で測定結果報告書を成し、測定後随時及び工事完成検査時に提出・報告を行うこと。
図7に鉄筋探査の流れを示す。

9. 検査の実施
検査職員は、完成検査時に対象となる全ての測定結果報告書を確認する。また、測定結果報告書の確認に加え、任意の位置を選定（1箇所以上）し、本要領に基づき非破壊試験を実施し、鉄筋の配筋状態及びかぶりの適否を判断する。足場等が必要となる位置の測定を実施する場合は、あらかじめ、足場等の確保を指示しておくものとする。
なお、中間技術検査においても、対象となる全ての測定結果報告書を確認するものとする。（現地における任意位置での測定については、完成検査時の実施とする）
表 6 報告書に記載すべき事項

<table>
<thead>
<tr>
<th>種 別</th>
<th>作成頻度</th>
<th>報告すべき内容</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>工事概要及び測定装置</td>
<td>工事毎</td>
<td>工事名称</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>構造物名称</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定年月日</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定場所</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定技術者</td>
<td>一定の技術を証明する資料</td>
</tr>
<tr>
<td></td>
<td></td>
<td>（所属、証明書番号、署名）</td>
<td></td>
</tr>
<tr>
<td>探査装置</td>
<td>頻度</td>
<td>探査装置の校正記録</td>
<td>①校正記録</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(名称、形状、製造番号、製造会社名、連絡先)</td>
<td>②略図</td>
</tr>
<tr>
<td></td>
<td></td>
<td>探査装置の校正記録</td>
<td>③写真</td>
</tr>
<tr>
<td>正測定結果</td>
<td>精度向上へ向けた補正</td>
<td>電磁波レーダー法</td>
<td>比誘電率の算出を行った対象（測定箇所）の形状、材質及び測定面状態</td>
</tr>
<tr>
<td></td>
<td></td>
<td>比誘電率の算出を行った対象（測定箇所）の形状、材質及び測定面状態</td>
<td>①測定結果図</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>②結果データ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電磁誘導法</td>
<td>かぶり補正値の算出を行った対象の鉄筋径、板の材質</td>
</tr>
<tr>
<td></td>
<td></td>
<td>かぶり補正値の算出を行った対象の鉄筋径、板の材質</td>
<td>①測定結果図</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>②結果データ</td>
</tr>
<tr>
<td>测定結果</td>
<td>测定毎</td>
<td>構造物の種類</td>
<td>構造物の種類</td>
</tr>
<tr>
<td></td>
<td></td>
<td>（橋梁下部工、橋梁上部工、ボックスカルバート工）</td>
<td>（橋梁下部工、橋梁上部工、ボックスカルバート工）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定対象の構造・構成及び測定箇所</td>
<td>測定箇所位置図</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定対象の構造・構成及び測定箇所</td>
<td>（構造図に測定箇所を明示し、箇所を特定する記号を付した図）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定対象の配筋状態</td>
<td>測定結果</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定対象の配筋状態</td>
<td>配筋図、施工図等</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定結果</td>
<td>①測定結果図</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定結果</td>
<td>②結果データ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定結果</td>
<td>③測定結果一覧表</td>
</tr>
<tr>
<td></td>
<td></td>
<td>不合格箇所*</td>
<td>④測定状況の写真</td>
</tr>
<tr>
<td></td>
<td></td>
<td>指摘事項*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>指摘事項*</td>
<td>（段階確認等において、監督職員等に指摘された事項を記入すること。）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>協議事項*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>協議事項*</td>
<td>（監督職員との協議事項等について記入すること）</td>
</tr>
</tbody>
</table>

※不合格時のみ報告する事項

注) 電磁波レーダー法及び電磁誘導法以外の試験方法で測定を行った場合の報告書の記載事項については監督職員と協議の上作成するものとする。
図 7 鉄筋探査の流れ

測定箇所の選定、立案

「非破壊試験実施計画」を盛り込んだ施工計画書の作成

事前調査

準備
（基準線及び走査線の設定、測定面の処理、探査装置の確認）

電磁波レーダ法

試験方法

電磁誘導法

比誘電率の算出

鉄筋探査
（鉄筋位置の測定、かぶりの測定）

かぶりの判定

測定かぶりが表 5 の判定基準に適合するか。

YES

判定項目

NO

再調査（測定箇所付近の他の 2 箇所で再調査）

測定かぶりが表 5 の判定基準に適合するか。

NO

不合格

対策について協議

合格

測定範囲内の鉄筋の本数が設計本数と同一本数であるか。

NO

不合格

測定結果の作成
（規格値に適合していない場合は、対策についての協議結果を含む）

測定結果の提出
（測定後随時及び完成検査時）

YES

鉄筋間隔の平均値が表 5 の判定基準に適合するか。

NO

不合格

測定かぶりが表 5 の判定基準に適合するか。

測定かぶりが表 5 の判定基準に適合するか。

YES

不合格

測定結果の作成
（規格値に適合していない場合は、対策についての協議結果を含む）

測定結果の提出
（測定後随時及び完成検査時）

合格

測定かぶりが表 5 の判定基準に適合するか。

YES

不合格

測定結果の作成
（規格値に適合していない場合は、対策についての協議結果を含む）

測定結果の提出
（測定後随時及び完成検査時）

不合格

測定結果の作成
（規格値に適合していない場合は、対策についての協議結果を含む）

測定結果の提出
（測定後随時及び完成検査時）
「非破壊試験によるコンクリート構造物中の
配筋状態及びかぶり測定要領（案）（解説）」

平成21年4月

国土交通省大臣官房技術調査課
目次

1. 適用範囲 1

2. 配筋状態及びかぶり測定要領（案の解説）
 （1）測定要領（案） 3. 使用機材 （近接鉄筋の影響の補正） 1
 （2）測定要領（案） 4. 測定者 2
 （3）測定要領（案） 6. 測定方法（（1）測定精度向上のための補正） 2
 1) 電磁波レーダ法における比誘電率分布及びかぶりの求め方
 2) 電磁誘導法におけるかぶり測定値の補正方法及びかぶりの求め方
 3) 探査試験
 4) 鉄筋の位置とかぶりの測定が困難な場合

3. 測定データ記入様式 3

4. その他 3

5. 測定データ記入要領 3
適用範囲
この解説は、非破壊試験によるコンクリート構造物中の配筋状態及びかぶり測定要領（案）平成21年3月一部改定に基づく配筋状態・被り測定試験に関する補足事項をとりまとめたものである。

配筋状態及びかぶり測定要領（案）の解説事項
（1）測定要領（案） ３．使用機材 表1 探査装置の性能について

<table>
<thead>
<tr>
<th>種 別</th>
<th>項 目</th>
<th>要求性能（電磁誘導、レーダ共）</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本性能</td>
<td>対象となる鉄筋の種類</td>
<td>呼び名 D10〜D51（注3）を測定できること</td>
</tr>
<tr>
<td></td>
<td>分解能</td>
<td>距離 5mm以下であること</td>
</tr>
<tr>
<td></td>
<td></td>
<td>かぶり 2〜3mm以下であること</td>
</tr>
<tr>
<td></td>
<td>間隔の測定精度</td>
<td>±10mm以下であること</td>
</tr>
<tr>
<td></td>
<td>かぶりの測定精度</td>
<td>±5mm以下であること</td>
</tr>
<tr>
<td>電磁誘導法</td>
<td>設計かぶりが50mm未満の場合</td>
<td>75mmの鉄筋間隔が測定できること</td>
</tr>
<tr>
<td></td>
<td>設計かぶりが50mm以上の場合</td>
<td>設計かぶり×1.5の距離の鉄筋間隔が測定できること</td>
</tr>
<tr>
<td></td>
<td>設計かぶりが75mm未満の場合</td>
<td>75mmの鉄筋間隔が測定できること</td>
</tr>
<tr>
<td></td>
<td>設計かぶりが75mm以上の場合</td>
<td>設計かぶりの距離の鉄筋間隔が測定できること</td>
</tr>
<tr>
<td>記録機能</td>
<td>データの記録</td>
<td>デジタル記録であること。容量（注5）1日分の結果を有すること</td>
</tr>
</tbody>
</table>

注1）電磁誘導法における鉄筋間隔が設計かぶりの1.5倍以下の場合、「電磁誘導法による近接鉄筋の影響の補正方法」の方法（独）土木研究所HP）により、近接鉄筋の影響についての補正を行う。
(2) 測定要領（案） 4. 測定者について

使用する試験方法の基礎的な知識を有していることについて、公的機関による証明書等を有する技術者

証明書等
① 資格証明書
② 講習会受講証明書
③ その他

(3) 測定要領（案） 6. 測定方法 (1) 測定精度向上のための補正方法

1) 電磁波レーダ法における比誘電率分布及びかぶりの求め方

測定に先立ち比誘電率分布を求める必要がある。具体的方法については、「電磁波レーダ法による比誘電率分布（鉄筋径を用いる方法）およびかぶりの求め方（案）」(独)土木研究所HP）によることとするが、双曲線法など実績のある方法を用いても良いものとする。

なお、「電磁波レーダ法による比誘電率分布（鉄筋径を用いる方法）およびかぶりの求め方（案）」を有効に適用するには、横筋と縦筋の正確な位置とかぶりの測定が可能であることが前提である。

2) 電磁誘導法におけるかぶり測定値の補正方法及びかぶりの求め方

実際の配筋状態による補正値の決定についての具体的方法は、「電磁誘導法による近接鉄筋の影響の補正方法」(独)土木研究所HP）によることとする。

3) 探査試験

通常の測定は、測定要領（案）に記載されている、現場で鉄筋位置をマークし、所定の位置の配筋状態、かぶり厚さを測定するようになっている（この方法を「鉄筋位置マーク法」と呼ぶ）が、現場での測定時間を短縮するために、配筋状態を画像で記録することができる装置の場合、配筋条件などによっては、縦・横メッシュ状（例えば10cmメッシュ）に測線を描いた透明シート（例えばビニール）を測定面に貼り、シートの線上を走査する「シート測定方法」がある。

この方法については、「レーダ法におけるシート測定方法」(独)土木研究所HP）によることとする。現場の状況、測定時間等を考慮して、使い分けることが肝要である。
4) 鉄筋の位置とかぶりの測定が困難な場合
電磁波レーダ法による測定の場合、以下の条件に該当する構造物は測定が困難となる可能性がある。電磁波レーダ法による鉄筋の位置とかぶり測定が困難な場合の対処方法 (独)土木研究所HPを参照し、対処することとする。
(ア) 鉄筋間隔がかぶり厚さに近いか小さい場合。
(イ) 脱型直後、雨天直後など、コンクリート内に水が多く含まれている場合。
(ウ) 鉄筋径が大きい場合。

3測定データ記入様式
各工事における測定データの記入様式は、別紙-1の様式によるものとする。
なお、提出様式については下記のホームページに掲載している。

ダウンロード先HP: http://www.mlit.go.jp/tec/sekan/sekiou.html

4その他
具体的な方法については、下記を参考に行う。

(独)土木研究所HP: http://www.pwri.go.jp/renewal/relation/conc-kaburi.html

- 電磁波レーダ法による比誘電率分布 (鉄筋径を用いる方法) およびかぶりの求め方 (案)
- 電磁波レーダ法による鉄筋の位置とかぶり測定が困難な場合の対処方法
- レーザー法におけるシート測定方法
- 電磁誘導法による近接鉄筋の影響の補正方法

5測定データ記入要領
3. の測定データ記入様式への記載の具体的方法については、別紙-2の「測定データ記入要領」を参考に行う。
構架上部工・下部工

<table>
<thead>
<tr>
<th>测定項目</th>
<th>测定手法</th>
<th>コンクリート打設日</th>
<th>测定時の材齢 (日)</th>
<th>矩形断面の場合</th>
<th>矩形断面の場合</th>
<th>鉄筋径 (mm)</th>
<th>测定値の平均値 (mm)</th>
<th>合否判定</th>
<th>許容値</th>
</tr>
</thead>
<tbody>
<tr>
<td>测定項目</td>
<td>测定手法</td>
<td>コンクリート打設日</td>
<td>测定時の材齢 (日)</td>
<td>矩形断面の場合</td>
<td>矩形断面の場合</td>
<td>鉄筋径 (mm)</td>
<td>测定値の平均値 (mm)</td>
<td>合否判定</td>
<td>許容値</td>
</tr>
<tr>
<td>测定項目</td>
<td>测定手法</td>
<td>コンクリート打設日</td>
<td>测定時の材齢 (日)</td>
<td>矩形断面の場合</td>
<td>矩形断面の場合</td>
<td>鉄筋径 (mm)</td>
<td>测定値の平均値 (mm)</td>
<td>合否判定</td>
<td>許容値</td>
</tr>
<tr>
<td>测定項目</td>
<td>测定手法</td>
<td>コンクリート打設日</td>
<td>测定時の材齢 (日)</td>
<td>矩形断面の場合</td>
<td>矩形断面の場合</td>
<td>鉄筋径 (mm)</td>
<td>测定値の平均値 (mm)</td>
<td>合否判定</td>
<td>許容値</td>
</tr>
<tr>
<td>测定項目</td>
<td>测定手法</td>
<td>コンクリート打設日</td>
<td>测定時の材齢 (日)</td>
<td>矩形断面の場合</td>
<td>矩形断面の場合</td>
<td>鉄筋径 (mm)</td>
<td>测定値の平均値 (mm)</td>
<td>合否判定</td>
<td>許容値</td>
</tr>
<tr>
<td>测定項目</td>
<td>测定手法</td>
<td>コンクリート打設日</td>
<td>测定時の材齢 (日)</td>
<td>矩形断面の場合</td>
<td>矩形断面の場合</td>
<td>鉄筋径 (mm)</td>
<td>测定値の平均値 (mm)</td>
<td>合否判定</td>
<td>許容値</td>
</tr>
</tbody>
</table>
非破壊試験による配筋状態及びかぶり測定結果（ボックスカルバート）

発注担当事務所名
工事名

かぶり測定
X方向
Y方向

鉄筋間隔 かぶり
設計値 (mm)
測定値の平均値 (mm)

かぶりの合否判定
X方向
Y方向

測定項目

測定箇所概略図
非破壊試験によるコンクリート構造物の配筋状態及びかぶり測定

測定データ記入要領
<table>
<thead>
<tr>
<th>章</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>調査票のシート構成</td>
</tr>
<tr>
<td>2</td>
<td>「①共通記入」シート</td>
</tr>
<tr>
<td>3</td>
<td>「②測定データ（橋梁上部・下部）」シート</td>
</tr>
<tr>
<td>3-1</td>
<td>測定箇所略図</td>
</tr>
<tr>
<td>3-2</td>
<td>測定箇所、測定手法、測定時の材齢</td>
</tr>
<tr>
<td>3-3</td>
<td>設計値、合否判定許容値</td>
</tr>
<tr>
<td>3-4</td>
<td>測定値</td>
</tr>
<tr>
<td>4</td>
<td>「③測定データ（ボックスカルバート）」シート</td>
</tr>
<tr>
<td>5</td>
<td>記入例</td>
</tr>
<tr>
<td>5-1</td>
<td>「①共通記入」シート</td>
</tr>
<tr>
<td>5-2</td>
<td>「②測定データ（橋梁上部・下部）」シート</td>
</tr>
<tr>
<td>5-3</td>
<td>「③測定データ（ボックスカルバート）」シート</td>
</tr>
</tbody>
</table>
1. 調査票の構成

本調査票は、以下のシートで構成されています。当該工事の工種に従い、該当するシートへ入力してください。当該工事に複数の工種が含まれる場合は、該当するシートの全てを入力してください。

<table>
<thead>
<tr>
<th>シート名</th>
<th>工種</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>橋梁上部工</td>
</tr>
<tr>
<td>①共通記入</td>
<td>○</td>
</tr>
<tr>
<td>②測定データ</td>
<td>○</td>
</tr>
<tr>
<td>（橋梁上部・下部）</td>
<td></td>
</tr>
<tr>
<td>③測定データ</td>
<td>〇</td>
</tr>
<tr>
<td>（ボックスカルバート）</td>
<td></td>
</tr>
</tbody>
</table>

2. 「①共通記入」シート

当該工事の地方整備局等名、事務所名および工事名を入力してください。本シートは、別添のアンケート調査との整合を図りますので、必ず入力してください。
3 「②測定データ（橋梁上部・下部）」シート

3-1 測定箇所略図

測定箇所を明示した正面図・断面図の略図（施工図などの活用も可）を貼り付け、断面 No.（赤字）と箇所 No.（青字）を略図に明記してください。

略図内の断面 No.（赤字）と箇所 No.（青字）は、下表の測定データ入力との整合を図ってください。

![測定箇所略図](image-url)
3-2 測定箇所、測定手法、測定時の材齢

各測定箇所における測定対象、測定断面、測定手法、コンクリート打設日および試験実施日を入力（選択）してください。
測定時の材齢（日）は、自動算出されます。
なお、測定断面で「その他」を選択した場合は、具体内容（具体的な断面名称）を入力してください。
3-3 設計値、合否判定許容値

各測定箇所における設計値（鉄筋径、鉄筋間隔、かぶり）を入力（選択）してください。
入力が終了すると、合格判定許容値が自動算出されます。
最小かぶりについては、コンクリート標準示方書（構造性能照査編 9.2）を参照し、入力してください。
鉄筋間隔・かぶりにおけるX方向（主鉄筋）・Y方向（配力筋）については、下図を参照してください。
3-4 測定値

鉄筋間隔の測定値は、各走査線から得られる走査線毎の平均値をさらに平均とした数値を入力してください。

かぶりの測定値は、各走査線から得られたかぶり値を配列し、走査線と鉛直方向のデータの平均値をかぶりの測定値として入力してください。

また、かぶりの概略値（L’）についても、各測線から得られる値を平均して入力してください。

鉄筋間隔・かぶりにおけるX方向（主鉄筋）・Y方向（配力筋）については、下図を参照してください。

かぶり測定時の分類については、『非破壊試験によるコンクリート構造物中の配筋状態及びかぶり測定要領（案）（平成21年3月）』のP.15「図7 鉄筋探査の流れ」での再調査の場合に「再調査」を選択してください。

鉄筋間隔・かぶりとも、測定データを入力すると合格判定許容値に対する合否判定が表示されますので、測定データの合否判定に関係ないか確認してください。
測定箇所を明示した正面図・断面図の略図（施工図などの活用も可）を貼り付け、測定 No.（緑字）、断面 No.（赤字）および箇所 No.（青字）を略図に明記してください。

略図内の測定 No.（緑字）、断面 No.（赤字）および箇所 No.（青字）は、下表の測定データ入力との整合を図ってください。

以下、測定データ表は、前述の「②測定データ（橋梁上部・下部）」シートと同様の手順で入力してください。
5 入力例

以下の各シートの記入例を参考に、入力してください。

5-1 「①共通記入」シート

<table>
<thead>
<tr>
<th>地方整備局等名</th>
<th>関東地方整備局</th>
</tr>
</thead>
<tbody>
<tr>
<td>事務所名</td>
<td>○○国道事務所</td>
</tr>
<tr>
<td>工事名</td>
<td>○○橋工事</td>
</tr>
</tbody>
</table>

○ 本調査票は、1工事毎に記入をお願いします。
「②測定データ（橋梁上部・下部）」シート

<table>
<thead>
<tr>
<th>断面No.</th>
<th>断面タイプ</th>
<th>断面別測定箇所図</th>
<th>上部工断面</th>
<th>下部工断面</th>
<th>全体縦断図</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>橋台工</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>橋脚工</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>橋脚工</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>全体縦断図</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

測定手法
- 電磁波レーダ法

コンクリート打設日	試験実施日	測定時の材齢
2008年10月4日 | 2008年10月20日 | 15日

鉄筋の測定中心間隔の平均値 (mm)

入力不要

(1) 電磁波レーダ法

コンクリート打設日	試験実施日	測定時の材齢
2008年10月11日 | 2008年11月5日 | 25日

鉄筋の測定中心間隔の平均値 (mm)

合否判定

合格

108 合格

3. 電磁波レーダ法

コンクリート打設日	試験実施日	測定時の材齢
2008年10月11日 | 2008年11月5日 | 25日

鉄筋の測定中心間隔の平均値 (mm)

合否判定

合格

108 合格

4. 電磁波レーダ法

コンクリート打設日	試験実施日	測定時の材齢
2008年10月11日 | 2008年11月5日 | 25日

鉄筋の測定中心間隔の平均値 (mm)

合否判定

合格

108 合格

測定対象 測定断面 測定箇所概略図

発注担当事務所名 ○○国道事務所

工 事 名 ○○橋工事
非破壊試験による配筋状態及びかぶり測定結果(橋梁上部工・下部工)

<table>
<thead>
<tr>
<th>测定箇所No.</th>
<th>断面</th>
<th>测定手法</th>
<th>鉄筋の中心間隔測定合否判定</th>
<th>容許値 (mm)</th>
<th>測定値の平均値 (mm)</th>
<th>かぶり</th>
<th>测定面と下限値</th>
<th>测定面と上限値</th>
<th>测定面と下限値</th>
<th>测定面と上限値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考:
- 测定箇所No.は測定箇所の番号を指す。
- 断面は測定箇所の断面を指す。
- 测定手法は測定方法を指す。
- 鉄筋の中心間隔測定合否判定は測定結果を示す。
- 容許値 (mm) は許容値を指す。
- 測定値の平均値 (mm) は測定結果の平均値を指す。
- かぶりは測定結果を示す。
- 测定面と下限値, 测定面と上限値は測定結果の範囲を示す。

メモ:
- 合格: 测定結果が許容値内
- 不合格: 测定結果が許容値外
- 再調査: 再測定が必要
- 入力不要: 入力不要
「③測定データ（ボックスカルバート）」シート

表

<table>
<thead>
<tr>
<th>測定箇所</th>
<th>测定手法</th>
<th>コンクリート打設日</th>
<th>测定断面</th>
<th>試験実施日</th>
<th>測定時の材齢（日）</th>
<th>X方向</th>
<th>Y方向</th>
<th>鉄筋間隔</th>
<th>かぶり</th>
<th>合否判定</th>
<th>許容値</th>
<th>测定値の平均値 (mm)</th>
<th>かぶり測定時の分類 (初回又は再調査)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>2008年10月5日</td>
<td>2008年10月27日</td>
<td>22mm</td>
<td>29mm</td>
<td>22mm</td>
<td>200mm</td>
<td>200mm</td>
<td>122mm</td>
<td>100mm</td>
<td>50mm</td>
<td>161mm</td>
<td>239mm</td>
<td>168mm</td>
</tr>
<tr>
<td>(2)</td>
<td>2008年11月2日</td>
<td>2008年11月29日</td>
<td>27mm</td>
<td>22mm</td>
<td>19mm</td>
<td>200mm</td>
<td>200mm</td>
<td>104mm</td>
<td>85mm</td>
<td>60mm</td>
<td>168mm</td>
<td>232mm</td>
<td>171mm</td>
</tr>
<tr>
<td>(3)</td>
<td>2008年11月2日</td>
<td>2008年11月29日</td>
<td>27mm</td>
<td>22mm</td>
<td>19mm</td>
<td>200mm</td>
<td>200mm</td>
<td>104mm</td>
<td>85mm</td>
<td>60mm</td>
<td>168mm</td>
<td>232mm</td>
<td>171mm</td>
</tr>
<tr>
<td>(4)</td>
<td>2008年12月9日</td>
<td>2009年1月9日</td>
<td>31mm</td>
<td>19mm</td>
<td>16mm</td>
<td>200mm</td>
<td>200mm</td>
<td>101mm</td>
<td>85mm</td>
<td>40mm</td>
<td>171mm</td>
<td>229mm</td>
<td>174mm</td>
</tr>
<tr>
<td>(5)</td>
<td>2008年12月9日</td>
<td>2009年1月9日</td>
<td>31mm</td>
<td>19mm</td>
<td>16mm</td>
<td>200mm</td>
<td>200mm</td>
<td>101mm</td>
<td>85mm</td>
<td>40mm</td>
<td>171mm</td>
<td>229mm</td>
<td>174mm</td>
</tr>
</tbody>
</table>

図

- ボックスカルバート
- 鉄筋間隔測定
- かぶり測定
- 鉄筋の中心間隔測定

註記

- 許容値
- 测定値の平均値
- かぶり測定時の分類 (初回又は再調査)