

－亀裂の発生要因

調査を行った結果，当時築堤に利用された河道掘削土は，含水量も非常に高く，細粒分の割合 も高い粘性土など，乾燥収縮が発生し易い材料であった。さらに，平成元年は例年と比べ平均気温が高く，湿度も低い気象条件であった。

このように，乾燥収縮しやすい条件が重なったことが亀裂発生の原因となった。

－対策工法の概要

亀裂の補修，再発を防止するため，天端土の置き換え，断面拡幅による堤防強化を実施。

秋田南大橋下流

－事業の効果

背後に秋田市街地を抱える重要な地区であり，堤防が健全な状態では概ね $1 / 50$ 規模の洪水 の水位まで安全性が確保されるが，亀裂が生じた状態では概ね $1 / 10$ 規模の水位程度の安全度 となり，安全性が著しく低下する。

本事業を行うことにより，堤防が健全状態に再生され概ね $1 / 50$ 規模の安全性が確保され，同規模の洪水が発生した場合には，浸水面積約 2，000ha，浸水家屋約 25,000 戸の被害軽減効果が発揮できることとなる。
$1 / 50$ 規模における想定氾濫区域

マニュアル及び技術指針に基づき事業の投資効率性を算出した結果は下表のとおり。
○「治水経済調査マニュアル（案）」に基づき算出

費
用

		金額等	摘要
C	建設費［現在価値化］※1	33.2 億円	
	維持管理費［現在価値化］※2	2.3 億円	
	費用合計	35.5 億円	
$\begin{aligned} & \text { B } \\ & \text { 効 } \\ & \text { 果 } \end{aligned}$	便益［現在価値化］※3	1，158．6 億円	
	残存価値［現在価値化］※4	2.7 億円	
	効果合計	1，161． 3 億円	
	用便益比（CBR）B／C ※5	32.7	
	現在価値（NPV）B－C ※6	1，125．8	
	済的内部収益率（EIRR）※7	135\％	

［費用］

※ 1：総事業費用から社会的割引率 4% を用いて現在価値化を行い費用を算定。
※2：評価対象期間内（整備期間＋5 0 年間）での維持管理費を社会的割引率 4% を用いて現在価値化を行い算定。

［効果］

※3：築堤前後の年平均被害軽減額を算出し，評価対象期間（整備期間＋50年間）を社会的割引率 4% を用いて現在価値化し算定。
※4：評価対象期間後（5 O 年後）の施設及び土地を現在価値化し算定。
［投資効率性の 3 つの指標］
※5：総費用と総便益の比（B／C）投資した費用に対する便益の大きさを判断する指標。
（1．O 以上であれば投資効率性が良いと判断）
※6：総便益Bと総費用Cの差（B－C）事業の実施により得られる実質的な便益額を把握 するための指標。
（事業費が大きいほど大きくなる傾向がある。事業規模の違いに影響を受ける。）
※7：投資額に対する収益性を表す指標。今回の設定した社会的割引率（4\％）以上であれ ば投資効率性が良いと判断。
（収益率が高ければ高いほどその事業の効率は良い。）

現在価値化 ：ある一定の期間に生ずる便益を算出するには，将来の便益を適切な＂割引率＂で割り引くことによって現在の価値に直す必要がある。 それを現在価値化という。
社会的割引率 ：社会的割引率については，国債等の実質利回りを参考に 4% と設定してい る。

原案：改善措置及び今後の事後評価の必要性はない。

（理由）

仁井田地区の堤防強化による整備効果が確認されており，地域の期待にも応えている。

